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|¢|; THE SADDLE POINTS

It has been established by Furth, Killeen & Rosenbluth (1963), and by Johnson, Greene & Coppi (1963),
that a hydromagnetic equilibrium which is stable on a theory in which electrical resistance is ignored,
may yet be unstable through finite conductivity effects. These authors have isolated and categorized
several types of such instabilities which, they show, originate from the critical layer in which the perturba-
tion wavefront is perpendicular to the equilibrium magnetic field.

In this paper, the asymptotic properties of the critical layer equations, for large values of the critical
layer coordinate, are obtained in a number of cases of interest, using the sheet pinch model with uniform
resistivity. The mathematical approach is a novel variant of the Laplace integral representation, which
allows results of greater generality to be obtained than those given by previous authors. The technique
is applied first to the slow interchange mode, and the restricted (but most significant) class of solutions
found by Johnson et al. is recovered. It is also shown that modes entirely localized within the critical
layer do not occur. Such modes do exist for the more rapid interchange modes, and a new discussion
of these is presented.

Finally, the oscillatory resistive modes, which arise when the perturbation wavefront is not per-
pendicular to the equilibrium magnetic field, are studied by a similar mathematical method, and
a class of eigenvalues is obtained.

1. INTRODUCTION

During the past twenty years, the attempt to design a controlled thermonuclear reactor has
led to considerable theoretical effort being expended in categorizing and understanding in-
stabilities which can arise in a plasma. The simplest models treat the plasma as an electrically
conducting incompressible fluid with small resistivity 7. Of these models, that known as the sheet
pinch leads to the simplest analytical description of the stability of the fluid. In the Boussinesq

1 Permanent address: School of Mathematics, University of Newcastle upon Tyne.
1 The National Center for Atmospheric Research is sponsored by the National Science Foundation.
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304 P. BALDWIN AND P. H. ROBERTS

approximation, the linear stability problem gives rise to a regular fourth-order ordinary dif-
ferential equation, which in the ideal limit r - 0 reduces to a singular second-order equation.

The situation is thus very similar to that encountered in the study of the linear stability of
plane parallel flows with small viscosity, », where the governing equation is the regular fourth-
order Orr—Sommerfeld equation, which reduces to the singular second-order Rayleigh equation
in the inviscid limit » — 0. It is well known in this theory (see, for example, Lin 1955) that velocity
profiles, stable according to inviscid theory, may yet be found unstable when the effects of
non-zero viscosity are properly allowed for; i.e. the viscous diffusion process may be destabilizing.
Analogous results hold for the plasma model.

Using an energy argument, Suydam (1958, see also Roberts 1967, ch. 9) obtained a necessary
condition for the linear stability of the ideal (r = 0) model. Later Newcomb (1960) found situa-
tions in which Suydam’s condition was also sufficient. Then, in a notable paper, Furth, Killeen &
Rosenbluth (1963), referred to here as F.K.R., recognized that a magnetostatic equilibrium,
stable according to ideal theory, may yet be found unstable when the effects of non-zero resistivity
are properly allowed for; i.e. the ohmic diffusion process may be destabilizing. The situation
is, however, more complex than the hydrodynamic situation, and they found several distinct
types of instability; see also Johnson, Greene & Coppi (1963), referred to here as J.G.C. and
Coppi, Greene & Johnson (1966).

When ris small but nonzero, the disturbance is governed by the singular second-order equation
of ideal theory everywhere, except in a critical layer around the singularity and, in general,
at the boundaries. In these regions the full fourth-order resistive equations are required. In
particular, it is necessary to determine which linear combination of the four solutions of the
resistive equation connects the ideal solutions (assumed matched to the boundaries) on either
side of the critical layer. This process has been described both by F.K.R. and J.G.C. in cases
where the perturbation wavefront is perpendicular to the equilibrium field in the critical layer.
Although these authors made no effort to solve the general matching problem, it appears that
they succeeded in locating the cases of prime physical interest. They found that some instabilities,
such as the fast interchange modes, are entirely localized within the critical layer, while others,
such as the tearing modes, are not.

Much of this paper is concerned with a detailed analysis of the asymptotic structure of the
solutions of the critical layer equation (for large values of the critical layer coordinate) in the
case of the slow interchange instability. The application of the Laplace method meets unexpected
points of difficulty. Their elucidation provides the main mathematical motivation and interest
of the present paper. The leading terms of the asymptotic expansions, in the complete sense
of Olver (1964), are determined for all solutions in each of the four Stokes sectors which arise.
These are used to match, across the critical layer, the ideal solutions of the physical problem.
It is then discovered that none of the slow interchange modes are localized within the critical
layer. Certain modes, which are identified with those found by J.G.C., grow at a rate which is
determined entirely by the critical layer, irrespective of the location and nature of the distant
boundaries or of the ideal solutions connecting them to the critical layer. In such cases, the
critical layer may be said to be ‘active’, in contrast to the ‘ passive’ layers (such as those occurring
for the tearing modes) which, while they influence the growth rate, do not determine it without
reference to the distant boundaries. In principle, the present analysis allows passive layers to be
treated as readily as active layers; this advantage is not enjoyed by the analytical methods
employed by J.G.C. and F.K.R., the scope of which are ‘restricted’.


http://rsta.royalsocietypublishing.org/

'\
o
A \
=\
AL A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

Y o ¥

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ON RESISTIVE INSTABILITIES 305

The basic analysis can also be used in two other ways. First, the propagation of waves in
which the perturbation wavefront and the equilibrium magnetic field are not perpendicular
may be discussed from a related mathematical standpoint; all waves associated with active
critical layers are shown to be stable. Secondly, the localized modes arising at large perturbation
wavenumbers may be obtained, and complete solutions can be readily given in all cases except
that of the fast interchange mode.

While, perhaps, none of these new results are as significant as those of J.G.C. and F.K.R., they
do bring the theory closer to completion, and also demonstrate a mathematical tool of some
independent interest.

2. THE GOVERNING EQUATIONS

The sheet pinch consists of electrically conducting incompressible fluid, contained between
two parallel walls, z = z, and z = zg say, in the presence of a sheared magnetic field

BO = [Bo:c(z)a BOy(z)a 0]9 (2'1)

where (x, y, z) are rectangular cartesian coordinates with z-axis vertically upwards. An externally
applied uniform gravitational field, g, which is necessary for the existence of the interchange
modes, acts in the negative z-direction. There is a density stratification:

Po = pe(1+pz), (2.2)

where pe and S are constants. The quantities |3z, | and |fzg| are both assumed to be so small
compared with unity that the Boussinesq approximation may be used. The resistivity, 7, is
supposed uniform, thus eliminating the rippling modes of F.K.R. If u is the fluid velocity, and
b = B— B, is the perturbation in magnetic field, the linearized induction, fluid motion and
continuity equations are, ignoring viscous diffusion,

bjot = V x (u x B,) +7V?2b, (2.3)
oufot = —Vw + (By Vb + b-VBy)/(upe) — 503/ pe, (2.4)
Viu=V.b=0, (2.5)

where % is a unit vector directed upwards, x is the (constant) permeability, 9 (= r/x) is the
magnetic diffusivity, and p.w denotes the leading order pressure perturbation. Since the fluid
is incompressible, the density perturbation, p’, satisfies in the present theory

0p'[0t = — fpcts,. (2.6)
Perturbations will be expanded into normal modes of the form
b = b(z) exp (i, x + i,y +opt), (2.7)
where p and @ = (e, @, 0) are constant. Let & be a typical strength of B, and introduce
F =a-B/(|a| 8), (2.8)

a quantity which vanishes when the perturbation wavefront is perpendicular to B, It is found
that (2.3) to (2.6) lead to the fourth-order dimensionless system

(D2 — a2 — Sap) = FW, (2.9)
(D2 — a2 — SaF2[p+ G[p?) W = — (Sat/p) (D2F — SapF) . (2.10)

26-2


http://rsta.royalsocietypublishing.org/

'\
A\
=%
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A Y

y \

A
/%

THE ROYAL A

A A

N

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

306 P. BALDWIN AND P. H. ROBERTS

Here D =d/dz, ¢ =ibja, W=u, G=gpri S=r1,1,
where the ideal (Alfvénic) time-scale, 7, and the resistive time-scale, 7

Ta =$(/,ch)%‘/,%, Ty =$2/7],

are defined by

7

and % = z —z,. In making these equations non-dimensional, 7, has been used as unit of time
and 9/ as unit of velocity. It should be noted that, as r - 0, the Lundquist number, S, tends
to infinity. It is sometimes convenient to work in terms of ¥ alone; (2.9) and (2.10) give

(D2 —a?) F-{(D?=a?) ¢ = (Safp) [D(p?+ F?) D(F14f) —a(p* + F2) (F-14) ]
— (G[p*F) (D2 —a2—Sap) yr. (2.11)
For definiteness, the boundaries will be supposed to be rigid and perfectly conducting, so that
Yy=W=0, for z=2z, and z=zs. (2.12)

The interval z, < z < zg will be denoted by % The direction, and generally the magnitude also,
of @ will be assumed given. For a given G, (2.9) to (2.12) then present an eigenvalue problem
for p.

If the resistivity is zero, it is found, formally setting Sa/p = oo, that (2.9) to (2.11) become

¢ = —FW, (2.13)
(D2— a2+ GJp2) W = p=2[F(D?—a?) ¢ — pD2F], (2.14)
D(p2+ F2) DWW = o2(p2 + F2) W—GW, (2.15)

where ¢ = Sapyr. Solutions to these equations are the ideal solutions.

There are three main issues to face when considering the limit Sa/p — co. First, the limit is
a singular one: although (2.11) is of the fourth order, (2.15) is only of second order. In general
boundary layers must be anticipated at the walls which match the interior flow, determined
by (2.13) to (2.15) to leading order, to the boundary conditions (2.12). These layers can be
constructed only if the interior flow satisfies

W=0, for z=2z, and z=zp, (2.16)

to leading order. Indeed, by (2.13), all conditions (2.12) are then obeyed, and the need for the
boundary layer disappears at leading order. In cases more general than (2.12), the boundary
layers are present but, since they are passive, they are of no great interest, unless the critical
point (see below) lies asymptotically within one of them.

Secondly, the limit introduces singularities: although (2.11) is regular everywhere, (2.15)
possesses regular? singularities at the points z = z; and z = z, satisfying

F(z) = (—=1)1ip (r=1,2), (2.17)

It is worth noting that, when these points lie in or (in the asymptotic sense given later) close
to the interval .#, it is necessary to delineate carefully the Stokes and anti-Stokes lines of (2.11)
associated with these critical points in order to decide the conditions under which ideal solutions
provide uniformly valid solutions to the full equations in the limit Set/p — co.

t The singularities are regular only if 2+ F? has no more than a quadratic zero at z = z;and z = z,, as will
be supposed here. More than one pair of such zeros may exist, and the present theory must then be modified to

include all of them. It is assumed throughout that B, is continuously varying in z, so that no choice of the direc-
tion of @ will cause F to vanish in any finite sub-interval of .
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ON RESISTIVE INSTABILITIES 307

The third issue concerns the question of how completely the eigenvalue spectrum can be
covered by the ideal system (2.13) to (2.16). This possesses solutions, called hydromagnetic modes,
which are the limits, as Sa/p - oo, of solutions to the full system (2.9) to (2.12). It is, however,
also possible to find solutions of the full system which do not so reduce. Resistive modes, for
which p — 0 as Safp — co, are particularly significant, since they can be unstable in situations
in which all hydromagnetic modes are stable. For the purposes of the present discussion, we
divide them into two classes depending on whether F possesses a zero or not in .#; i.e. whether
the perturbation wavefront is perpendicular to the magnetic field anywhere in .Z, or not.

Suppose F(z.) = 0, where z¢ is real (z, < z < zg) and} F’(z¢) % 0. Since p — 0 as Sa/p — o0,
the regular singularities z, and z, of (2.17) coalesce with z¢ in this limit. Writing

F~Fl(z—z,) as z->z, (2.18)
(2.15) gives ¢~ A(z—zo)d M4 B(z—2zo)d2m  as  z >z, (2.19)
where 4 and B are constants, and 4m® = } - G[F2. (2.20)

(In cases in which G/F;? < , the positive root of (2.20) will be selected for m.) In the neigh-
bourhood of a critical layer of width & (where § — 0 as Sx/p — o0), the full equations must be
used to describe the solutions. Introducing the stretched coordinate, ¢, by

z—ze = {6, (2.21)
(2.11) gives to leading order

- (2 (3l one] - S sarn

It is this equation which leads to the resistive modes of F.K.R. and J.G.C.

If we now assume that & < O(1), so that all terms in a2 can be ignored in (2.22), then the
remaining terms on the left-hand side of (2.22) are of the same order provided both Szé8%/p and
Sapd? are O(1) in the limit, i.e. provided that

0 =0((S%)=}) and p = 0((Sx)-}). (2.23)

'This defines the slow interchange mode, one of the main topics of this paper. We find it more
convenient to replace (2.23) by

= (PISaFRY, A = (S lF2)L, (2.24)

and to require that 4, the new eigenvalue parameter replacing p, is O(1) in the limit; for
definiteness, we choose argd = }argp, where it is supposed that —= < argp < wn. Equations
(2.9) to (2.11) then become

‘ilg;- AP +LV), (2.25)
d
A(—ig—Z—( Sy gz, (2.26)
dfidw] d d (P\] dm2—}[de
zlra] sl oz (7)o ] v (2.27)
where ¥ =Sadiy and V=AW,

1 See footnote on previous page.


http://rsta.royalsocietypublishing.org/

"'\
o
A \
=\
AL A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

Y o ¥

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

308 P. BALDWIN AND P. H. ROBERTS

As well as possessing ideal solutions of the form (2.19), equation (2.11) possesses resistive
solutions which, as the W.K.B.]. method shows, behave as linear combinations of

(z—z0) %% exp {%(z —2c)? (%)%Fc': and (z—z¢) Ztexp { —3(z—2zc)? (%)%Fé} , (2.28)
m? 1
where k= Y RRETY BT (2.29)

Under the transformation (2.21) they, like (2.19), must be related to solutions of the critical
layer equation (2.27) for large |¢|; see § 4 below. Formal solutions of the critical layer equations
(2.25) to (2.27) are derived in § 3, and their asymptotic expansions are obtained in § 4. Certain
significant exceptional cases are examined in § 5.

When F does not vanish in .# interest is centred on values of p which are purely imaginary
in leading order in the large Sa/p limit, and for which one (or both) of the critical points defined
by (2.17) lie in .#. Boris (1968) has shown that such resistive modes occur only for critical points
located (asymptotically as Sa/p — 00) at global extrema of F for z e . These points may be located
either at the end-points z, and zg, or at internal points of .# where F attains a global maximum
or minimum. The problem posed by the former situation is analogous to the usual parallel flow
problem (cf. Reid 1965), and has been completely solved by Boris. The situation posed by the
latter leads to a critical layer equation whose general asymptotic properties raise difficulties
which he did not fully resolve.

Assume, therefore, that F has an extremum at z = z, within .Z, so that

FeFeo+3F)(z—20)%, as z-—>ze (2.30)
where F; and F; are non-zero. To find the appropriate critical layer equation, let
8= (+SaFf)4, p =+ (iFo—HAF!8), B = G|F.F., (2.31)

where that value of ¢ with the smallest value of |arg d| is selected in each case, and 4, the new
eigenvalue parameter, is O(1). Equation (2.22) then gives

=g+ oy (2.5

The properties of this equation as |{| - co are considered in §7, and the related oscillatory
resistive modes are discussed. The investigation is made to depend on the analysis of §§ 3 to 5.

3. SOLUTION OF THE CRITICAL LAYER EQUATIONS

Equations (2.25) to (2.27) may be solved by Laplace transformation. Let

W) = f Q) s,
(3.1)

7e) = - et K ds
A) ¢
where % is a contour in the complex s plane chosen in such a way that the integrated parts,

arising in the derivation of (3.2) to (3.4) below, vanish. On substitution of (3.1) into (2.25) to

(2.27), we obtain dx
i (s2—4) Q, (3.2)

& (42Q) = (e —am 4 ) K, (3.3)
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ON RESISTIVE INSTABILITIES 309
d( 4s* d . 9 _
These may be solved in terms of the confluent hypergeometric function. Denote by M(z)
solutions of
dMm 1 k }-—m?
—a—z—2'+(—z+z+ 2 )M—O, (3.5)
where £ is defined by (2.29). It may be verified by direct substitution that
Q(s) = sTE M(s?) + §s—H[1 +572(A + § — 4k)] M(s?), (3.6)
and K(s) = sEM'(s2) + 3s¥[1 —5~2(4 4+ 3)] M(s2), (3.7)
satisfy (3.2) to (3.4), two independent solutions being, for instance, provided by
M(2) = My, 1. (2) (3.8)
where My (2) = Z2me¥e Fi (3 +m—k;142m;2), (3.9)

and ,F(a; b; z) is Kummer’s hypergeometric function. By the use of (2.29), (8.9) and elementary
properties of Kummer’s function (see, for example, Slater 1960), equations (3.6) and (8.7)
may also be written as

Q(s) = Q(s, 4, k,m) = (1/A) (3 +m— }A4) e~ s2m—

x{(t—m+34) F1(3+m—k; 14 2m;5%) + (3 —m—$4) | F1 (3 +m—k; 1+ 2m;5%)},  (3.10)
and

K(s) = K(s, 4,k,m) = (1/4) (3 +m —}A) e~¥s* s2m—%
) {(h=m+ 1) By (3 m ks 14 2m8) — (1—m—}A) By (34 m— ks 14 2m; )}, (3.10)

a second set of solutions being given by reversing the sign of m. Any linear combination of these
two sets is also allowed, and the following choice will be of importance later:

emirm e—'rrirm

Q(S) = Qr(s) = I‘(%—m—(-l)'k) q(m’s)—]“(%+m—(—1)’k) q("m:s)) (3'12)

e ¥ st (L4 m—k) Fy (3 +m—k; 1+ 2m;s2)
+ (3A+1—k),Fy (3 +m—k; 14 2m; 5%}, (3.13)

1
q(m,s) =m

Here 7 is an integer.

The second of equations (2.24) allows two equal and opposite 4 for each p. If the sign of 4
is reversed, the £ defined by (2.29) becomes 1 — £, and these new values of the parameters appear
to lead to further independent solutions for Q(s) and K(s). The significance of the transformation

A>—d, k->1—F (3.14)

may be most readily appreciated by considering @(s) in the form (3.10). Kummer’s first theorem

shows that 1+m+34

o —_ =
Q(Se ) A>1 k’m) (%_'_m_%A

) emion ) (s, 4, k, m).
If the first of (3.1) is now written more explicitly as

WL, A, kym; E) = f et Q(s, 4, k,m) ds,
'3

1 1
we see that Y, —4,1—km;%) = (i—_l—:ﬂ_-%é—) emmtD P(Ledt™ A k,m;E.), (3.15)
1 +m— §A
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where #_is the contour obtained by rotating % through a right angle about s = 0 in the negative
sense. Similar remarks apply to V.

It will be seen later that, for each choice of integrand and contour, there exists a sector of
the ¢-plane in which (3.1) provides a convergent solution, and one of the main obstacles en-
countered in the theory is that of extending a solution from one { sector to others. Although it
is now clear from the argument just given that (3.14) provides, from a solution valid in one ¢
sector, a new solution valid in a different ¢ sector (displaced by an angle of =), the two solutions
are not related to each other in any obvious way. For this reason, solutions obtained by the
transformation (3.14) will not be examined further.

The problems raised by the choice of the contour in (3.1) will now be considered. The dis-
cussion will be general: the treatment of a number of exceptional cases will be deferred to § 5.
It is easily shown that the conditions that the integrated parts, obtained in the reduction of
(2.25)—(2.27) to (3.2)—(3.4), should vanish are

[e*52Q(5)]¢ = [e** K(s)]¢ = O. (3.16)
The only singularity appearing in the integrands of (3.1) is s = 0, whichisin general [m + 1(2r— 1),
r an integer] a branch point. Thus in general ¥ may not encircle s = 0, neither may it terminate
there [except if Re (m) > % and the choice (3.8) is made, with upper sign]. Hence in general ¥
may terminate only at infinity. To examine this possibility, the following asymptotic expansion
for z - oo is noted (Slater 1960, eq. 4.1.6):

I . 1
1F1((l; b; z) ~ —];%a%ezza—be—mm(a—b)z]?o(b —a, 1— a;; z)

F(b) —a aTia(2n-4-) . 1)
+P(b—a)z € 2F0(a,1+a—b,,—z . (8.17)

1, for 2nm <argz< (2n+1) -rc,}

Here nisintegral and ¢ = { (3.18)

—1, for (2n—1)m < argz < 2nm.
It is clear from (3.17) that, for general £ and m, the integrand of (3.1) possesses anti-Stokes
lines Ry, given by args = —{n(2N-1), (3.19)
and that, between these, the asymptotic expansion of Q(s) contains both es* and e~3* terms,
one of which is exponentially large. Itis true that, by forming the appropriate linear combination
[namely the @y of (3.12)], the exponentially large term can be eliminated, but only in a single
sector, namely the domain Dy defined by arg slying between the values defining Ry and Ry, . This
may be verified explicitly by substituting (3.17) into (3.12), yielding
2isin 2rm(n+r)
O R TG tm— B

e 1 {m?— (k— %)%} {emm@nt2rtagin w(% —m — k) — e ™m@n+2ria gin (L +m —k)}
T

. 1
els’—2mniG—k) g2k}  F) (— Y+m+k, —L—m+k;; F)

x e—dsH@ntom@-—k) s2k—3 F (%— +m—k,§—m—k;; — %)
(3A+ % —k) 2isin 2rm(n+7)
IG-m=KB T +m—F)

+ % (34 + 1 — k) {emm@ntertagin (4 —m — k) — e~™m@nt2r 9 gin (L +m—k)}

els2emniG+k) —2k—§ 2F0 (% +m+ki—m+ k”%)

x e~dstHentamg-h 2k-§  F, (% +m—ky—m—k;; — %) , (3.20)
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and
er—l ( s) ~ 1 {eTrim(2n+2r—1) sin n( % —m+ k) — e—Tim2n+2r-1) Sin'Tl:( % +m+ k)} elsi—2mnil}—k) g—2k—}
T

{m?— (k—%)?} 2isinmm(2n+ 2r +€—1)
I'(}—m+k) I'(3+m+k)

1
szo(—%+m+k, —-%—m+k;;;§) +

. . - 1).1(4
x e-ds*HentamG—h) g2k—5  F (% +m—k,$—m—k;; --}5) += {5 +3— lc}

% {e'rrim(2n+2r—1) sinm(}—m+k) — e—Tim@n+2r-1) gin (3 +m+ /c)} ekst+emni+k) —2k—§

1\  (34+%}—k)2isinmm(2n+2r+e—1)
1 1_ oo edt g
x oIy (2+m+/c,2 m+k,,s2)+ TO—m+B I3 +m+h

x e~FstH@ntamiG—h) 2§ [, (% +m—k,y—m—k;; — %2) , (3.21)

where now, by (3.18), €= {

1, for nm<args< (n+3%) TE,}
—1, for (n—})w < args < nm.

(3.22)

(The corresponding expansions for s~1K(s) may be derived by reversing the signs of the terms
involving the factor $4+%—k; cf. (3.10) and (3.11).) Even by selecting Qy, we would only
obtain the trivial zero solution if we allowed otk ends of € to terminate in Dy. In fact, no matter
what choice of @ is made, at least one end of ¢ must approach infinity along one of the rays (3.19).
Then by (3.17), the Q(s) and K(s) of (3.1) are at most algebraically large, and the et term
decides which of the rays (3.19) is permissible. It is found that ¥ may approach infinity along

Ry if, for some integer z,
(2n+iN+i)m<argl < (2n+3iN+3) m. (3.23)

Hence every solution (3.1) is valid in only a limited sector of the {-plane. This fact gives rise to
unusual difficulty in relating solutions in different § sectors.

Solutions may be found, for any @, by allowing % to approach infinity along two different rays
Ry. For instance, solutions valid in the range (3.23) may be obtained by selecting the contour
Cy, defined as starting from infinity on Ry and ending at infinity on Ry_,, having passed round
s = 0 in the positive sense (C, is shown in figure 1). In order to find the complete solution of
(2.27), four independent solutions must be obtained for a given arg . It might be thought that
the Cy contours would suffice since, for any particular arg ¢, two such contours are acceptable,
and for each of these, two independent choices of @ are available. Unfortunately, however, as
we will show later, the four solutions obtained in this way are always linearly dependent. It is
necessary to make use of solutions employing @y and having one end terminating in Dy, as
described above. Many choices of four independent solutions are possible. Considerations of
symmetry make it convenient to proceed as follows.

Let the contour 7y} start at infinity on Ry, pass to the left of the origin, and end at infinity
somewhere in Dy, ,; similarly, let yy pass to the right of the origin and terminate in Dj,_,. Let
the contour A} start at infinity on Ry, pass to the left of the origin, but end at infinity somewhere
in Dy,; similarly, let Ay pass to the right of the origin and terminate in Dy_,. All these contours
are shown in figure 1 for the case N = 1. When {lies in the sector (3.23), solutions may be obtained
from all the yy and Ay (suffices, mod 4) contours, the corresponding integrands being the
appropriate @,(s) of (3.12).

27 Vol. 272. A,
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312 P. BALDWIN AND P. H. ROBERTS

Ficure 2. Stokes and anti-Stokes lines in the {-plane.

Let the contour I'y; start at infinity on Ry, remain in sector Dy, and end at infinity on Ry,,;
similarly, let I'y pass through Dy_, from Ry to Ry_,. (Thus I'{ and I'y,, are essentially the same,
though described in the opposite sense; I'y™ and Iy are depicted in figure 1.) When ¢ lies in the

sector (2n+3N+3)n <argl < (2n+3iN+3)m, (3.24)
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where 7 is an integer, solutions may be obtained using I'%,. Moreover, for this sector all the C,,
v, and A, solutions are available both for r = N and r = N+ 1: this is illustrated in figure 2
by the circled numbers (N, N+1) in each sector of the ¢ plane; as before, the suffices are
arbitrary to a multiple of 4.

The next task is to relate solutions in adjacent ¢ sectors. To this end, the following notation
will be used:

w66 - | Q) s (3.25)

Here %), is any of the contours defined above in association with Ry, and it is assumed implicitly
that arg { is such that the integral converges, the appropriate integrand also (in the case of the
v~ and Ay contours) being selected. It is worth noting that ¥,(§) is an integral function of §,
the substitution s = 5" e*™ in (3.25) leading, for integral /, to the result

Y,(5E) = e ™Y, (8 Cyya)- (3.26)

Ficure 3. Distortion of Cy,, contour in the s-plane.

The solutions arising from I'{ have an interesting property which is, in fact, central to the
later discussion. Since there are only two possible independent choices of integrand, the contour
I'}; can at most provide two independent solutions in (3.24). Now (3.12) may be selected as one
of these integrands, and, since this is exponentially small at infinity in D, the contour I,
when deformed to infinity, clearly yields the trivial zero solution. In other words, the solutions
defined by I'} are, for all choices of Q(s), proportional. This important property may be used, for
example, to show that the Cy contours cannot provide four independent ¥(§). For arg {in (3.24),
these solutions are linear combinations of ¥, (&; C,) and ¥,_,(¢; C,) where s = N or N+ 1, and
7 is given any integral value. From figure 3 it is clear that

Cyi1= Ty +Cy+ Ty,
so that (85 Cyia) = = V(G TR) + V(85 On) + (8 TR0,

and similarly when 7 is replaced by  — 1. But the solutions ¥,(&; I'moa) 20d ¥,_1(&; I'Ymoan)
are proportional. It follows that all four Cy solutions can be expressed as linear combinations of
the three solutions ¥,(&; Cy), ¥,_1(; Cy), and Y,(&; TR).

The four yy and Ay solutions associated with the ray Ry provide four linearly independent
solutions in sector (3.23); for the smaller sector (3.24), two such sets of solutions are associated with

27-2
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the rays Ryand Ry, ,. (The corresponding contours are illustrated in figure 4.) In order to be able
to extend any particular solution to any arg¢, it is necessary to be able to relate the solutions
associated with Ry to those associated with Ry, i.e. it is necessary to evaluate a 4 x 4 matrix,
T, such that sN — TN+, (3.27)

) \
w AN
+
W+1 At % e
YZ\TH N+1
Ry+1 Ryn+1

Ry By
Ficure 4. Contours in the s-plane useful when (2n+4N+$) n < arg{ < 2n+iN+2) m.

Here s¥ is the column vector of solutions defined by

s

(&)
SN — 3%: _ P28 AR) (3.28)
53 Py (&5 vw)
5 Py-s(8 AN)
The matrix 7" may be found from the properties of the solutions already described, and from
(3.12), (3.13), (3.20) and (3.21). Since the asymptotic form of Q,(s) depends on whether »
is even or odd, the two cases of N even and N odd must be treated separately: consider first
the former.

The contour vy used in the definition of s’ may be deformed into I'y, since the integrand dies
exponentially both in Dy, and on Ry, ;; cf. (3.25). In the same way, the contour yy; defining
s¥+1 may be deformed into I'Y taken in the reverse direction. Thus, by the fundamental property
of the I'y solutions, s and s{'+! are proportional. The constant of proportionality may be found
from (3.21) in the special cases of 7 = $N and r = N + 1; in both we must take n = —{N, since
—(AN+})w < args < — (3N—1) = on I'}. The terms in e~3* may be ignored since (for these)
the contour may be deformed to infinity, and zero contributions to the integrals result. The
required constant of proportionality is therefore minus the ratio of the e¥* coeflicients, i.e.

—e~2"k, Thus the first row of T is [0, 0, 2™, 0],
The contour A} used in the definition of sy may be deformed into I'Y + 4., and therefore

5 = YLK,
the constant K being evaluated as in the previous case. Defining f(k) by
27
f=I8) = Fa=m—n G m =R’
a short calculation shows that X = fe~™k. Thus the second row of 7"is [1, 0, fe~™%, 0].

(3.29)
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The contour 5 used in the definition of s} may be deformed into I'{ + Ay, and a similar
calculation gives the third row of 7" as [0, 0, —fe~™¥, 1].

The contour Ay used in the definition of s} is more difficult to treat, and the contour Cy,,
defined after (3.23) will be used. Since Ay may be deformed into I'f; + Cy,,, we have

st = K'si 1+ WPy (85 Cyp)s (3.30)
where the constant K’ may be evaluated as K was. Since
Cni1 = VN4 = A-s = AN —Vh-

(3.26) gives P18 Cvia) = s3T5+, Pyp(85 Cyyn) = s +s1+ (3.31)
Moreover, the definition (3.12) of Q,(s) gives

Wy3(8; Cvya) = — 2™ Wy (8 Cyy) +/(— k) €™ Py _o(8; Cy 1) (3.32)
On combining (3.30) to (3.32), we obtain

s = f(—k) e N1 — e2ik N+1__ 2 (cos 2rm + cos 2mk) sV 1+ f( — k) €™ s+

which yields the final row of 7.
On repeating these calculations in the case of odd ¥, the same matrix 7" is obtained, except
that % is everywhere replaced by — 4. We define, therefore, T(k) by

0 0 ek 0
1 0 Sk) e—mik 0
T(k) = 0 0 — F(k) e i , (3.33)
f=Ryems — el fR) f(—K) (k) e
and write (3.27) in the form sV = T(k(—1)N) sV+1, (3.34)

It is sometimes useful to express this in the inverse form

SN+ = [T(k(—1)M)]-1 sV, (3.35)
where, as can readily be verified,
._f<k) eTik 1 0 0
-1 _ —fB)f(=k) f(—k)e™ fl—k)e ™k -2k
[T(R)] =  qemk 0 0 o . (3.36)
S(k) ek 0 1 0

It is interesting to note that [ 7(k)]~t is [ T(k)]*, relabelled according to (1,2, 3,4) — (3,4, 1,2),
It is also worth observing that, on applying (3.34) four times, we obtain

SN = [T(k(— 1)N) T(k(— 1)N+1)]2 N+ = — gN4+4 (3.37)

which agrees with the more general result (3.26), and at the same time provides a useful check
on T(k).
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4. ASYMPTOTIC EXPANSIONS FOR LARGE [{|; THE SADDLE POINTS

It is readily seen from (3.20) and (3.21) that the integrands of solutions (3.1) have saddle
points, located asymptotically at

s=0y={e?™ and s=0,= M, (4.1)

where [ is an integer. These two saddle points will be referred to as ‘outer saddle points’ since an
inspection of (3.12) for small |s| reveals the presence of another ‘inner saddle point’ at

$+2m

§=0y= e, (4.2)
It will be later realized that the outer saddle points are associated with the resistive solutions
(2.28), while the inner saddle point is related to the ideal solutions. The inclusion of the integer /
in (4.1) and (4.2) is necessary in subsequent calculations since arg s is carefully specified at
infinity on each contour used, and is therefore uniquely defined at any saddle point over which
the (suitably distorted) contour may pass.

N0y

A%

\4

R

% No,

\%

9
< >

0y
<{_>

(@) —3m<argl=<-—1mx (b)—4m<argl=<0

%

v
(c) O<argl<im (d)im<argf<gm

Ficure 5 (a to d). For legend see facing page.
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The contribution to the expression (3.1) for ¥(¢) from the neighbourhood of each saddle point,
when € is deformed to pass over it along the steepest curve, will now be evaluated to leading
order. This means that the seccond and third terms in (3.20) and (3.21) are neglected, and that
in the remaining terms the leading term only (i.e. unity) is included from each ,F, function.

(a) The saddle point oy

The contour % is deformed to pass over s = o in the steepest direction from arg (s—o,) = =«
to arg (s — o) = 0. When Q,,(s) is used in the integrand, the contribution to the integral is

A/g (_24 + %_ k) {e'rrmi(2n+2r+€) sin TL‘(% —m— k) — e—Tmi@n+2r+e) gip TL‘(% +m— k)}
x (¢ e2ml) 2§ cntamiG-B+ie  (4,3)

where 7 and ¢ are given by (3.22) for the value of arg o, indicated. Similarly, for Q,,_,(s), the
contribution is

J(2r) (34A+%—k) 2isinmm(2n+ 2r+e— 1)
I'A—m+k) I'(3+m+k)

%
< >
o1
< >
A

o
g >_§4
[ v

(¢ e2mil)2h—f p@ntomi—o+3e2, (4.4)

Aoy
<
\
ey tm<argf<imn (f)inm<argl<mw
vV

(g)m<arg{ < ¥ (h) it <arg L= 3m

F1GURE 5 (e to &). Steepest curves in the s-plane over the inner saddle point, o, for a number of ranges of arg £.
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(8) The saddle point oy

The contour is deformed to pass over s = o, in the steepest direction from arg (s—o,) = 3w
to arg (s— o) = —3n. The contributions made to the integral, when @Q,.(s) and Q. .(s) are
used, are respectively

2sin 2rwm(n +7)
VO Fr =B T+ m=F)

. (2 . ; .
-1 A/ - {emmiCGntr—Dgin (4 —m+ k) — e~ —Dgin (L +m + k) }

x ( g e’rri(zl-i-l)) —2k—} o—2Tni(}—k)—}L?, (4. 6)

(£ em@HD)~2k~} o—2niG—k)-§e2, (4.5)

(¢) The saddle point o,

For real m, the curves of steepest descent from o, are perpendicular to the ray args = arg o,
but both are asymptotically anti-parallel to it when |oy| < |s| < 1; see figures 5. If any segment
of the contour % of (3.1) has to be brought into the |s| < 1 neighbourhood of the origin and
over o, the corresponding contributions to the integrals may be derived, to leading order, by
neglecting the factor 3" in (3.13) and retaining the leading (i.e. unit) terms of the ,#; functions,
and by extending the segment to infinity along the rays args = (2/+ 1) x—arg{. The error
introduced by this change of contour is exponentially small. The modified contour, %, is defined
to pass from infinity on the ray args = (2/— 1) = —arg {, encircle the origin in the positive sense,
and return to infinity along the ray args = (2/+ 1) = —arg {. It is now necessary to evaluate the

integral
f st s—E-2m dg,
s

This may be cast into a more familiar form by making the substitution s = — (#/£) e#™ and
adopting the convention that In (—¢) is real when ¢ is on the negative real axis. The contour
%, transforms into a contour, %, which starts and finishes at infinity on the positive ¢-axis and
encircles the origin once counterclockwise. The integral now becomes

_ (S?_”) T f et (=t

On referring to Hankel’s representation of the gamma function (see, for example, Whittaker &
Watson 1927, §12.22), we can re-express this as
21 e2mh —3—2m

In evaluating the contribution made by Q,(s) to ¥({), we find that integrals arise which contain
the term s—#+2m rather than the term s—#-2m appearing above. These possess a different inner
saddle point, given by (4.2) with the opposite sign for m. If m > £, this lies on the opposite side of
the origin to o, and the topology of the steepest curves is different. Nevertheless, the contribution
it makes to the integrals (3.1) can in all cases be obtained immediately by reversing the sign of
m in the expressions given above. In this way, the final contribution made by @,(s) is found to be

E =L(m{) —L(-mQ), (4.7)

_ 2mi(34 + § +m — 2k) S
L,(m,{) St em) TG —2m) T(G—m—(—1)k) € (_) .

where (4.8)
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For imaginary m, the saddle point o is displaced by up to §= radians from the ray

args = —arg{,
and the level curves are correspondingly distorted near the origin. The curves of steepest descent,
however, remain asymptotically anti-parallel to the ray args = —arg¢{ when |og| < |s] < 1,
so that the results obtained above remain valid.

Now that the contours for the basic set of solutions have been defined and the contributions
from the saddle points have been obtained, expansions for large |{| may be listed. The range

—in <arg{ < 3n (4.9)
has been selected for detailed consideration, although any other 2r range for arg { would have
been equally acceptable. Figures 5 show, for a number of values of arg { in the range (4.9),
the inner saddle point o, and the steepest curves through it, and also the outer saddle points
with the directions of their steepest curves. It may be seen that, in addition to the natural division
(3.23) of (4.9), there is a change in the topology of the inner curves as { crosses any of the lines Sy
depicted in figure 2. In fact, these are the Stokes lines, and the asymptotic expansions must be
considered separately in each of the = intervals of arg { indicated in figures 5. The process is
considered in detail for s? in the first subinterval of figure 5(a). Results for other intervals are
listed in table 1.

In the sector —}r < arg{ < — =, the contour y5 may be deformed away from the origin
to pass over the saddle point o, and to leading order the solution s} is therefore given by (4.6)
with/ =7 = ¢ = —1andr = 2. The contour A may be deformed to pass first round the contour
Ce in the reverse direction and then from infinity on Rg to infinity in the required sector D,,
passing over the saddle point o, in the process. The leading contributions to s3 are therefore given
by (4.7) with / = —1 and r = 4, and (4.3) with / =¢ = —1 and r = —n = 2. The contour y;
may be deformed away from the origin over the saddle point o, the resulting leading order
contribution to s§ being given by (4.3) with / =n =r = 0 and ¢ = — 1. Finally, the contour
A3 may be first of all deformed into C, and then from infinity on R_, to infinity in the required
sector D_; over the saddle point o,. The leading contributions to s} are given by (4.7) with [ = 0
andr = —1, and (4.6) with /[ =r=0andn = —¢ = 1.

The terms in the solutions of table 1 have been arranged in order of decreasing dominancy,
and the solutions show that the lines Sy of figure 2 are indeed the Stokes lines, i.e. the subdominant
parts of the solutions may change on passing across them. The lines Ay are the anti-Stokes lines
across which the order of dominancy reverses.

The results of table 1, together with the relations (3.34) and (3.35), may now be used to list
four independent solutions in the complete range (4.9) of arg ¢. The following solutions, denoted
by s(i), have been chosen as convenient to extend to the full range:

s(1) = sf in O0<argl<in,
5(2) = 5§ in O0<argf< }n,
5(8) = st in $rm<argl<m, (4.10)

5(4) =s3+s53 in O0<argl<in

The full asymptotic expansions of these solutions have been displayed in table 2. In each case,
the terms are in the order of decreasing dominancy for the first half of the interval named (i.e. for
the smaller values of arg{), and in order of increasing dominancy for the remainder (larger

arg {).

28 Vol. 272, A.


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

320 P. BALDWIN AND P. H. ROBERTS

TABLE 1. SOLUTIONS ASSOCIATED WITH THE RAYS Ry for —in < arg{ < §n

Notation
S =flk); see (3.29), g = 3A+}—k h=f(-Fk),

F= A/Esin 2nm {1, G = A/ésin 2rm -8, H = 3¢,

3

E, is the { = 0 case of (4.7).

Sector 1. —3n < argl < —4in
R, solutions: 2 ~ ie-"kFe-H, 2~ Ey+gG eH,
2~ —gGeH, 2~—je™FeHLE |,

\
W\
A

Py
f
A

y

JA
L

Sector 2. —jn < arg{ < 0

R, solutions as in sector 1, with dominancy reversed.

R, solutions: 3 ~ gG e+ E,—ifFf e~H, .
E,—ie™(1+2 e~2™* cos 2rm) F e H,
iemikf eH, ~
—gG eH +ifF e-H.

ao"'w
111

THE ROYAL
SOCIETY

Sector 3. 0 < arg § <

- e
5 p4 R, solutions: s§ ~ ie ™R e H,
EQ 53 ~ gG eH+ifF eH,
o - 52 & —gG eH + Ey—ifF e~H, -
o) g & s2~ E_j—ie™k(142 e?™* cos 2mm)F e~ H.
@A ~ -
0‘2 Ry solutions:  sf ~ gG eH, s} ~ E;—ie"tf e H,
§< s§ ~ieWkFeH, 3 ~—oGeH+E,
-4
Sl Sector 4. v < arg § < inw

R, solutions as in sector 3, with dominancy reversed.

R, solutions: st ~ —ie™F e~H 4 E, —e~Tgh( ef,
E,—e~2mk(1 42 2™k cos 2um) gG eH,
e-—-21Tik£G eH B

i emEF e=H 4 e~TEgh( eH,

O;?h
1R

Sector 8. 3n < arg{ < §wn
R, solutions: s3 ~ gG eH,

53 ~ —iemhF emH 4 e~Tgh( eH,
s8 ~ i eF e~H | E, — e~Tkgh( eH,
3 ~ Eg— (1+2 e~2™* cos 2mm)gG eH.
R, solutions: st ~ —ie™F eH, st~ E, —~e—2'""°g6~v’ eH,
o 5§~ et eH, b~ i eTEf e H 4 E,.
st ¢ v Sector 6. v < arg{ < w

R, solutions as in sector 5, with dominancy reversed.

Ry solutions: s8 ~ —e~2"kgG eH 4 B, 41 ek fF e~ H,
52~ Ey+iedm (142 e~2Tkcos 2nm) F e~ H,
s8 o~ —i TS e-H,
$8 ~ e 2Mke(G eH —j 2™k [ e-H,

Sector 1. < arg{ < &n

THE ROYAL
SOCIETY

R, solutions: s ~ —iemkf e-H,

5§ ~ — e 2mikg(y eH — | 2T ff e—H,
5§ ~ e ?MhgG eH + E, +i 2™ fF e~ H,
s} ~ Ey+ie™r (142 e2™* cos 2nm)F e~H,
R; solutions: 8 ~ —e2MgGG eH, 8 ~ E+ieSTrf e H,
S~ —j kS e-H, b ~ 2kl eH L E,.
Sector 8. 2w < arg{ < 3n

R; solutions as in sector 7, with dominancy reversed.
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TaABLE 2
Sectors 1 and 2: —imw < arg{ < 0
s(1) ~ —ifF e-H 4+ E,+ 4G eH,
5(2) ~ iemF eH,
5(8) ~ ieSMkE e~H _ e 2MkE_| — e~Tikgh(G eH,
s(4) ~ E,.
Sectors 3 and 4: 0 < arg § < i,
s(1) = ¢G et
5(2) ~ ie™FeH,
5(8) ~ —e~ghG eH 4 ) —i ™ F e~ H,
s(4) ~ E,.
Sectors 5 and 6: v < arg§ < =
s(1) ~ gG eH,
5(2) ~ ie™F e~H 4 B, — e "kgh( eH,
5(8) ~ —iemkf e-H,
5(4) ~ E,—2 cos 2rom e~2™kg( eH.
Sectors T and 8: w < arg { < &w
s(1) ~ 26 eH 4 2R, 4§ edmik fﬁ e H,
5(2) ~ — e~ TrGhG H — TRE, _j ST e H,
5(3) ~ —iemhi e—H,
~ —2 cos 2nm e~ gG eH 4 Ey—2 cos 2nmE,.

For definitions of sectors (1 to 8), and f, g, h, F, G, H, and E,, see table 1.

We now apply our results to the physical problem. The interval . is now a segment, con-
taining ¢ = 0, of the straight line formed by the rays arg {6 = 0 and arg {é = =; see (2.21) and
(2.24). If arg p = =, these rays coincide with anti-Stokes lines, and our analysis gives no useful
results. Since, however, this possibility corresponds to relatively uninteresting damped modes,
we will consistently ignore it.

Aninspection of table 2 shows that no solution exists which decays exponentially with increasing
|¢| both for arg {8 = 0 and arg {6 = T, i.e. there is no solution of physical interest that is localized
within the critical layer. Next, we consider whether solutions exist which grow at most algebraic-
ally with increasing |¢| for both arg {6 = 0 and arg {6 = =, i.e. whether solutions exist which
match to ideal solutions on either side of the layer.

Consider the critical layer solutions

L(8) = f(—k) e7™Fs(1) +5(2) +5(3),

2 =™k cos 2tm (4.11)

I = ————5(2) +5(4).
(6) = 22 (4
These have the asymptotic properties
I,(§) ~ E,, for |{|—>o and arg{d=0 or m,
L) ~E, for |{|—oc0 and arg&d =0,

—mik
L(£) ~ E,— 2—6—?“)]32—’5’11@, for |{|>o and argld =m.

(4.12)

28-2
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322 P. BALDWIN AND P. H. ROBERTS

In listing these results, exponentially small contributions, which change discontinuously across
the Stokes lines arg { = 0 or =, have been omitted; i.e. the expansions (4.12) are asymptotic in
the sense of Poincaré.

Suppose that the ideal equation (2.15) has been solved, in the case p = 0, in the two intervals
zy < z < z¢ to the ‘left’ and z; < z < zy to the ‘right’ of the critical point z., and satisfy the
required boundary conditions ¥(z,) = ¥(zg) = 0;see the discussion of § 2. In the neighbourhood
of z¢, these solutions will assume the form

Y~ Ay (ze—2z)2mtE + By (ze —2) "2t (2> 2o — 0),}

4.13
¥~ Ag(z—zo)2 i+ By(z—zo) 2t (2 20+ 0),) (4.13)

see (2.19). Although A, /By, and Ag/By are fixed by the boundary conditions, neither solution
is, at this stage, determined to within an arbitrary multiplicative constant. The requirement
that it should be possible to match (4.13) to a solution of the critical layer equation poses an
eigenvalue problem for 4, as we will now see.

In terms of the scaled variable ¢, (4.13) may be rewritten as

Y ~ Ap ot tememiGram pitem 4 B §3-2me—miG-2m f3-2m_ for |{] >oc0 with argld =,
Y~ Agditemitem g B gi-tmEi=2m . for |{] > o0 with arggd = 0.

After multiplication by suitable constant factors, these solutions may, with the aid of the defini-
tions of £, and E; (see table 1) and (4.12), be expressed as
¥ = [y otmetmim[ay(m) — Jay(m)] + By[ag(—m) — Jay(—m)]] Iy
—[Ay 0% e~tmima, (m) + Bray(—m)] I, if argéd =, (4.14)
¥ = [Ag dmay(m) + Brag(—m)] Iy —[Ap 0*"ay(m) + Bray(—m)] I, if argld =0,  (4.15)
where (r = 1, 2)
2mi(§A + §+m— 2k) e™rm 2 e~ cos 2nm

T(1-|—2m)F(—%——2m)]‘(%_m_(_1)rk)ﬂ J=—‘W—. (4.16)

a(m) =

Equations (4.14) and (4.15) must represent the same solution of the critical layer equations,
to within a multiplicative constant. It follows that

TTay(m) 05 Ay + 2y —m) -2 B x [ay (m) 8%y, =2 4 gy (—m) 82 By, 2]
= [ay(m) a;(—m) —ay(m) ay(—m)] x [ Br 4y, e~ — By A e¥™i],  (4.17)

This dispersion relation, which involves the ratios 4; /By, and Ax/By (known from integrations
from the boundaries), determines all possible eigenvalues, A. If m is purely imaginary, §2"
and 8-2™ do not vanish in the limit & - 0, but become increasingly oscillatory. Then 4 will itself
change rapidly as So — o0, and will depend on Ay /By, and Ag/By, i.e. it will be influenced by
the location of the distant boundaries. Because of this, we may say that the diffusion layer
surrounding ¢ = 0 is ‘passive’. In contrast to this, if m is real, 6™ — 0 and 62" — co, as & — 0.
Then 4 is independent of A1,/By, and Ag/By, i.e. it is not influenced by the distant boundaries.
We may say now that the diffusion layer is ‘active’. There are, in this case, two main possibilities,
as (4.17) shows:
(1) neither By, nor By vanishes (the general case). We must have

either J=0 or a(—-m)=0, (4.18)
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(ii) By, By = 0 (the exceptional case) which may itself be divided into three subcases:

(a) %_J=Z°E:Z§, if B,=0 and By 0, (4.19)
(%) ZOE:Zi—J= ZOEZ; if Bp=0 and Bp#0, (4.20)
(¢) either J=0 or a(m)=0, if By = Bg=0. (4.21)

Temporarily disregarding the J = 0 possibility, (4.18) requires that either

I4m+k=1-N, (4.22)
where N is a positive integer, or
JA+3—m—2k = (2/4) (}+m) (}—m—34) = 0. (4.23)
Since (34m+k)—1=—(1/4) (1 +m+34) (3} —m—}4),

condition (4.23) may be regarded as the missing N = 0 case of (4.22). The J = 0 possibility
also leads to the same conditions, in the general case, although this requires a separate demonstra-
tion (§5) since the values of m concerned, are exceptional (m = %(2r — 1) where r is an integer).
The second of the possibilities (4.21) gives the same results with m replaced by —m. Thus cases
By, By 0 (upper sign) and By, = By = 0 (lower sign) require

$+m+k=1-N (N = non-negative integer). (4.24)

Conditions (4.19) and (4.20) lead to demands on m which cannot be met.
From (3.13) and Kummer’s first theorem, we have

0m,) = gy S G mR) B~ b bmet ks L om; —s)

+(34+1—k) Ji(G+mt k1 +2m; —5%)],
and hence the solutions given by (4.24) are characterized by the fact that one or other of the
q( +m,s) has terminating I series. These are the solutions obtained by J.G.C. (§1v; cf. (50)
noting that Fourier transforms are used so that their & < 0). Equation (4.24) determines the
eigenvalues 4 for given m. Using the definition (2.29) of &, we obtain
A*+4A4(+m+ N) +4m>—§ = 0, (4.25)
which is condition (59) of J.G.C. Its solution is
A= —2(N+m)+,{4(N+m)2—dm?+ 1. (4.26)

For 0 < m < }, 4 is real and, in general situations (upper sign with m), it is positive. Equation
(2.24) then gives positive values for p, and hence instabilities. For m > }, 4 is negative in general
situations, giving damped oscillations.

5. EXCEPTIONAL CASES

The general results of § 4 become invalid for the exceptional values of m which make 1/I'(1 — 2m)
or 1/I'(§ — 2m) zero, and special circumstances also relate to the vanishing of 4 + % +m — 2k:
(i) If m = 4n where n is a positive integer, the inner saddle point makes only one independent

28-3
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contribution, and those from the outer saddle points vanish, since each contains a factor sin 2rm.
For m = 0, the solution (3.12) for Q(s) is degenerate. These situations arise from the fact that
one of the solutions (3.8) of Whittaker’s equation (3.5) becomes invalid, and the usual limiting
argument must be used to find another. No physical interest attaches to this mathematical point,
and the case will from now onwards be ignored.

(ii) If 2m = n+$ where n is a non-negative integer, the inner saddle point again yields only
one independent contribution, and the solutions of table 2 are no longer linearly independent,
though the analysis remains valid if the E, are interpreted as in (5.1) below. In such cases the
origin is no longer a branch point, and the ¢(m, s) defined by (3.13) is regular at the origin. It
is in fact a zero of multiplicity n, whereas ¢( —m, s) has a pole of order —n— 3. Hence the only
solution associated with the inner saddle point is a polynomial of degree zn + 2 (see, for instance,
(3.1) with & chosen as the appropriate Cy, or simply a contour encircling the origin), and is
valid for all £. This is also shown by solution s(4) when cos 27m is set zero, as long as the following

interpretation is used for E,:
27i(3A + 3 —m— 2k) T

ErZ—T(1~2m)F(%+m_(_1)rk)e [CEDIk (5.1)

The further solution, required to complete the set of four, may be found by choosing Q(s) and
K(s) as them > 0cases of (3.10) and (8.11), and the contour % of solutions (3.1) as an appropriate
ray Ry. The inner saddle point contribution to this new solution for large |{| may be found as
in §4. The leading order integral to be considered is

f estsnds,
@

%

where %,, is a contour running along the ray args = n —arg ¢ from the origin to infinity. Trans-
forming to the ¢ plane as before, the integral becomes, with exponentially small error,

(_é)"“ f etimds = (_é) (5.2)

A convenient set of four solutions associated with the ray Ry is now

Pya(85vR)
Y, SYN
sV — N—Z(gy 7N) , (5.3)
Po(8)
P(&; Ry)
where s and s are defined as in (3.25), while
2ni(3A + 3 —m—2k)
0 = s¢ g — ~ 2 4 N2
woe) = [ etg(-m o dex TRIIES D s (5.4
and Y(&; Ry) =f est g(m, s) ds. (5.5)
RAT
Proceeding as in § 4, the relation ¥ = T(k(—1)N, N) sN+1, (5.6)
may be established where
[ 0 e—2mik 0 0]
i k ik e»-'n'im(N—z) 0
- —f(k)e Ry "
T(k,N) = . (5.7)
0 0 1 0
ﬂ:i e—'“'i(k-l-mm
| Sz TG R 0 1
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As a check, repeated application of (5.6) yields, after some reductions using cos 2rxm = 0,

-1 0 0 O
0—-1 0 0

sV = o 0 1 0 sN+4, (5.8)
0O 0 0 1

As far as sV and s are concerned, these results agree with (8.26). The si and s} solutions do not
partake in the sign change, as is immediately clear from (5.4) and (5.5), recalling that 2m—$ = n.
Again proceeding as in §4, the new solution s¥ may be evaluated for large |{|, and used to
supplement table 1, which is still valid. The results are as follows:

sie X for —4n <argg
<- %T%
2 X 5.0 X T e—2mm F‘ " g X g o
Ry Ly +sin2nml”(%+m-—lc) e or —inm<argl<o,
2~ X— 7 e—2mim F”C_H S~ X for 0 < arg§ <1in
£ sin 2rem I'(% +m —k) - ™
3 X 4 X iTC C—“i<3m+k) é o f 1 .
"E =27 n 2an(%+m+k)g ef for im<argf<im,
S~ X i7t e—TiBm+k) GeH ¢~ X for in<argl<érn
1 oM (3 +m+h)® = bm < arg{ < ¢,
i~ X 50 X 7t e 2miem—k) el o 3
ue A TG rmpL e for dr<argl<m
4 e T e—21'ri(2m—k) F‘ - s ¥ . i
= +sin2nmf(%+m_k> € Sa = or m<arg{ < im,
sSs~X for 3 <argl < i,
A+ §+m—2k 1\n+1
h sl Skl P 5.9
where X o ( g) (5.9

From the supplemented table 1, the following solution s(5) may now be found to supplement
table 2:

T e—2Tim

fe—H 1
sin2m I'(4 +m—k) Ferf+X for in <argl < 0,

X for O0<argl<in
g 2%
iTC e—'n'i(3m+k)

5(5) ~ |~V s TG T R

gGel for im<argl<m,

iTC e—'rri(?.m +k)
sin 2nm I'(3 +m+ k)

ime-mont
",
sin 2rm (3 +m+k) " *

gGel + X+

T e—2‘rri(m—-—2k)

sin2an(%+m—k)Fe for m<argf < §m.

The argument dealing with the continuation of the ideal solution through the critical layer
may now be extended to include these exceptional cases. In general situations, i.e. By, By + 0
in the notation of §4, s(5) provides the relevant solution through the layer, if and only if the
condition (4.22) is satisfied for non-negative N. An inspection of equation (4.26) shows that since
m > %, such modes are damped. In exceptional circumstances, however, when By, = By = 0,
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solution s(4) apparently provides the relevant solution through the layer for any 4. There is,
in fact, no critical layer in this case, the ideal solution with leading term (z — z¢)®*2 near z = z,
providing the solution throughout .#.

(iii) From equation (4.23), the expression $4 + £ +m — 2k is zero when m = }, and once again
the inner saddle point makes only one independent contribution. In this case, however, con-
ditions (3.16) are not satisfied at the origin by any of the possible @(s) and K(s), so that the
extra solution may not be provided by a contour terminating at the origin. As in the last case,
the contribution from a relevant contour Cy, or a closed contour encircling s = 0, is a polynomial
and is valid for all §. The analysis of § 4 leading to tables 1 and 2 is again correct, but provides
only three linearly independent solutions.

Since (2.11) and (2.20) show that ¥ is an integral function of m, the fourth solution may be
obtained by a limiting argument as follows: consider, for general m, the solution

I'(3+m—k)

s(m,8) = f(—k) e ™ks(1) +5(2) +5(3) —e‘“imﬁm s(4). (5.10)

The exponential terms contain the factor cos2zwm, and the ideal terms contain the expression
+A+ 3 +m— 2k or cos 2mm, thus 5(%, {) = 0. The expression
5(¢) = lim $08) (5.11)

does not, however, vanish identically. It provides the required fourth solutions for m = }. On
division by the constant /21(4 —1) I'(} — 14) exp ( — }=nid)[({/=4), it is found that

5(§) ~ 242 for [{|—>o0 and 0 <argf<in,

18 4 e—imi+d) _
5(8) ~ 2«/2*%7065’ for | >o00 and im<argl<m.

J(2r) 4 et

Now let s(6) =35(8) + 1-1

I'(3+%4)s(2), (5.12)
then, to leading order
5(6) ~ 242 for |{|—->o0 and argld =0,

N A I(G+id)
$(6) = 22+ 72 g ey

The solutions s(2), s(3), s(4) and s(6) provide a linearly independent set when m = }. This
case, relevant to the tearing mode, has been considered in detail by Gibson & Kent (1971), and
our solutions agree with theirs, for arg {§ = 0 and =, to leading order (observe that our 4 is their
#2). It may be seen that, on multiplication by a factor of /(37)ie~™*, our solution s(2) can be
identified as their solutions (6.27) and (6.27),; also, on multiplication by ,/(}=) ¢™*, our 5(3)
leads to their (6.26) and (6.26),. Our s(4), which is a multiple of {, corresponds to their (6.3),
and finally our s(6) corresponds to their (6.31) and (6.32). The coefficient of {in 5(6) forarg { = =
becomes, when approximated for small 4,

—ay2=AT(DIT(), (5.13)

¢ for [{|>oc0 and argld=m.

cf. their (6.32) and (6.36). The continuation of the ideal solution through the singular layer in
this case is given fully by Gibson & Kent.
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6. THE LOCALIZED GRAVITATIONAL MODES

It is now demonstrated how perturbations of short wavelength (1/x) can give rise to instabilities
which are localized inside the critical layer. The disturbances are governed by the critical layer
equation (2.22) with appropriate choices of layer width § [ < O(1)] and eigenvaluep[ < O(1)], for
the postulated o[ > O(1)]. There are three main cases to consider corresponding to three different
orderings of o, namely (i) a > O(S8%), (ii) a = O(S%) and (iii) O(1) < a < O(S?). In case (i),
the solution exhibits a double structure, one (‘inner’) layer lying within the other (‘outer’).
The outer solution will be denoted by ¥y, and the corresponding stretched coordinate by .
(The use of 5 for magnetic diffusivity will henceforth be abandoned.)

Case (i): a > O(S?)
The width of the critical layer is here O(a—%5-%) and it is found that p = = 1G}[1 4+ O(S¥/a)].
In fact the choice

8 = GHEF) S, p=a1GH(1—LAGEF,Sta 1), (6.1)
where arg ¢ is zero for F; > 0 and = for F, < 0, gives, in leading order, the equation
d2 P
(a—z—z'—gz'l'/\)—g = 0. (6.2)

This has the general solution
¥ = AGW 1 (8) + BEW_1,3(- 83), (6.3)

where 4 and B are constants and W, ,, is the Whittaker function. Suppose first that argé = 0.
In order that the solution (6.3) is ‘localized to the right’ [i.e. in order that ¢ -> 0 as { - coexp (0)],
it is clearly necessary that B = 0; cf., for example, Slater (1960, § 4.1.3). From the requirement
that it should also be ‘localized to the left’ [i.e. that iy — 0 as { -> 00 €!™] it then follows that

1

ey R 4

It is now seen that an infinite set of eigenvalues p exist for which the A defined in (6.1) are
given by A=1+2r, (6.5)
where r is a non-negative integer; the corresponding eigenfunctions are

lﬁ = @ I/Vi(l-i-zﬁ,i(gz)' (6-6)
If arg § = i, a similar analysis leads to (6.5) and (6.6) with A replaced by — A, and {2 by — 2.

Case (ii): the fast interchange modes (J.G.C.); o = O(S%)
The width of the critical layer is here ¢ = O($-%) and it is found that p = O(S-%). All terms
in (2.22) contribute to leading order, and the fast interchange mode (cf. J.G.C. §11) is recovered.
More specifically the choice

ESEE A\ AF\b
oc=( - ) st 6=(“E‘E;'é) -, and p=( 2 )S—%«, (6.7)

together with the introduction of new variables ¥ and V, defined by
Y =S4 and W= (EBAF2)LV, (6.8)
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into equations (2.9) and (2.10) leads to
d?P[dg% = (A+E) P+ ALV (6.9)
and Ad2V[dE? = (AE+4m?— 1+ AL V+ ALY. (6.10)

Equations (6.9) and (6.10) reduce to (2.25) and (2.26) when £ = 0. Unfortunately we have been
unable to determine the structure of the solutions of (6.9) and (6.10) through the critical layer,
and thus to provide a more general analysis that would have included that of §§ 3 and 4. Apart
from the case E = 0, the equations have been solved for E > A4 by J.G.C., who also obtained
some numerical solutions. The analytic treatment of the equations is the remaining outstanding
problem connected with the gravitational instabilities in the sheet pinch. Its importance should,
however, not be overstressed; see remark after case (iii) below.

Case (iii): O(1) < & < O(S?)
The width of the inner layer is here O(Sx)-%, while that of the outer layer is O(1/a). It is
found that p = O(S«)~3. With & = 1/a, the outer equation is, to leading order,

d2 1_ m2
d71’f2°+(—1+47—)¢0=0, (6.11)
of which the general solution is

Yo = AMo, 5, (29) + BMy, —0(27), (6.12)

where 4 and B are constant, and A, ,, denotes the Kummer function (cf. (3.5) and (3.8) above).
Appropriate values of 4/B can be found both on the left (argy = =) and right (argy = 0) of
the critical point such that the solution is exponentially small for || - co in both cases. For
7 — 0, these solutions will take the form

Yo = Ay (= )b By(— g (g -> ")

6.13
Yo o Agyhtn + By (5 > 04), (6.13)

(cf. (4.13)). Thus, since the inner layer scaling is that defined by (2.23), the matching problem
of § 4 is recovered, and the conclusions of that section follow.

In all three cases positive eigenvalues p exist giving instabilities. The order of magnitude of
p decreases continuously as « increases. In physical units, the growth rate ap of the disturbance
increases continously from O(a8S-%7,1) for the slow interchange mode to O(7;!) for o > O(S%).
Although the latter instabilities have the same growth rate as that arising in the ideal theory,
they are not believed to be of great practical import, since they are easily stabilized (see, for
example, Stringer 1967; see also F.K.R. §vi, and J.G.C. §v1). The outer layer of thickness
1/a which exists when O(1) < a < O(S%) gradually thickens to become the mainstream of the
slow interchange mode for « < O(1).

7. THE OSCILLATORY MODES

The oscillatory resistive modes arising when F has an extremum within .#, at which F & 0,
will now be considered (see § 2). Resistive effects become important in a critical layer where F
attains its extreme value, the governing equation being (2.32). This equation may be solved by
the Laplace integral

v(©) = [ esQds (1.1
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where Q(s) is a solution of the equation

1d2Q  1dQ 1.4 B\,
motmat (it =0 (7.2)
and % is a contour in the complex s plane, chosen so that
[635{(§s2+ 4s) Q + 52 gg}] = 0. (7.3)
ds 4
The change of variables u=s Q=utM, (7.4)
. d2M 1k }-m?
in (7.2) then leads to Tz T (_Z+z_4+ " )M =0, (7.5)
where k=314 and }-m?=1B+5. (7.6)

Hence the general solution for Q(s) is any linear combination of the solutions ¢( +m, 5), where

q(m,s) = ms—%ﬂmeﬁs’ L3 +m—k; 1+ 2m;s?) (7.7)
(cf. (3.5) et. seq.).

The solutions (7.1) may thus be investigated for large |¢| as in §§ 3 to 5, the solutions @,(s)
of (3.12) occupying a central place in the discussion, but with ¢(m, s) defined as in (7.7). The
contours defined in §3 may be used without change, the appropriately modified asymptotic
expansions of (3.20) and (3.21) leading to exactly the same linking matrix 7. The asymptotic

analysis of § 4 needs minor modification, and tables 1 and 2 remain valid with the interpretation

f=f(k) = ]"'(%+m-—k)27lt“(%—-m——k)’ g=1, h =f(—k)a \

F=— J 7% sin2nom {32k, G = A/ 7%_ sin 2nem {442, H = 12

Er = Lr(m: g) —Lr( —m, §),
2ni emirm (1) $+em

Lim &) = rrsm Ta—2em TG =n=(= 17 R \E

From (2.81), if the upper sign is selected, arg ¢ = + }= according as Fy is positive or negative,
so that z > z, corresponds to arg§ = T}, and z < 2z corresponds to arg { == F }n. The signs
of arg § and therefore of arg { are reversed if the lower sign in (2.31) is selected. The change in
the ¢ direction does not take the matching discussion out of the sectors used in § 4, so that the
solutions I;(§) and I,({) of (4.11) and (4.12) may again be used. The ideal solutions of (4.13)
remain valid if the exponents } + 2m are changed to —  + 2m. The matching then continues as
before with the interpretation

(7.8)

where

e-nirm

oM = FTT e TG —2m) TG —m— (=17 R

(7.9)

J remaining unchanged, and leads to a matching condition similar to (4.17). For ‘active’ layers
the cases (4.19) and (4.20) again give no solutions, but (4.18) and (4.21) lead to

Yim+k=—N, (7.10)
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for m > 0, where N is a non-negative integer, the upper sign referring to general situations
(By, + 0, By + 0). Equations (7.6) then give

= —4N—-27F (1—4B)}, (7.11)

for B < }. Hence, if F2 has a maximum (F.F, < 0), the critical layer is ‘active’ if G > 1F Fy,
and eigensolutions exist, the second of equations (2.31) showing that they are damped, the rate
of damping increasing with mode number N. Similarly, if #2 has a minimum, the critical layer
is ‘active’ if G < }FcFy, all eigensolutions again being damped, the rate of damping increasing
with N. In other words, if G is sufficiently large there is an infinity of damped resistive modes
which approach +iF,,, in the p plane as S — 00, and similarly if G is sufficiently small there is
another infinity of damped resistive modes which approach +iF;,.

The exceptional cases (i) and (ii) of § 5 are also relevant to the discussion. The comments on
case (i) stand without alteration. In case (ii) we consider m = n+ %, where n is a non-negative
integer. This now gives ¢(—m,s) a pole of order —n— 1, leading to a polynomial solution of
degree n. Table 2 remains valid with the final definition of (7.8) replaced by

27 e—mirm g

Er:_T(1—2m)1’(%—+m—(—1)rk);?' (7.12)

A modified set of four solutions may be selected as in § 5 ,where (5.4) now becomes

wo(g) =fONeS§q(m,s) ds ~ —ﬂ%—ﬁ)g——' (7.13)

This leads to the same modified matrix 7 of (5.7), and the solutions s, and s(5) are also valid
with the interpretation ol {\n+1

X= Fivem ('Z) (7.14)

Most of the material presented here was given (as joint work) in the Ph.D. thesis of one of the
authors (P.B.), submitted early in 1971, We are grateful to Dr R. D. Gibson for reading the work
at that time, and for offering helpful suggestions.
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